B.M.S COLLEGE FOR WOMEN, AUTONOMOUS
 BENGALURU - 560004
 SEMESTER END EXAMINATION -APRIL / MAY- 2023
 M.Sc. Mathematics - III Semester

LINEAR ALGEBRA

Course Code MM301T
Duration : 3 Hours

QP Code: 13001
Maximum Marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. a) Define an algebra. If A is an algebra with unit element over F then prove that A is isomorphic to a subalgebra of $A_{F}(V)$ for some vector space V over F.
b) Define regular and singular transformation with examples for each. If $\mathrm{V} V$ is a finite dimensional vector space over F then prove that for any $T \in A_{F}(V)$ is singular if and only if there exists a vector $v \in V$ with $v \neq 0$ such that $v T=0$.
c) If V is an n-dimensional vector space over F, then prove that for a given $T \in A(V)$ there exists a nontrivial polynomial $q(x) \in F[x]$ of degree atmost n^{2} such that $q(T)=0$.
2. a) Define minimum polynomial of a linear transformation. Let $S, T \in A_{F}(V)$. If S is regular then prove that T and $S T S^{-1}$ have the same minimal polynomial.
b) Define characteristic root of a linear transformation. If λ is a characteristic root of $T \in A_{F}(V)$ then prove that λ is a root of the minimal polynomial of T. Further prove that T has only a finite number of characteristic roots in F.
c) If V is an n-dimensional vector space over a field F and if $T \in A_{F}(V)$ has the matrix $M_{1}(T)$ in the basis $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and the matrix $M_{2}(T)$ in the basis $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ of V, then prove that there exists a matrix $C \in F_{n}$ such that $M_{2}(T)=C M_{1}(T) C^{-1}$.
3. a) Define composition of two linear transformation. Prove that the product of two linear transformation is a linear transformation.
b) Define a linear functional and dual of a basis. Prove that the double dual of V is isomorphic to V.
c) Let $b_{1}=\left[\begin{array}{c}-9 \\ 1\end{array}\right], b_{2}=\left[\begin{array}{c}-5 \\ -1\end{array}\right], c_{1}=\left[\begin{array}{c}1 \\ -4\end{array}\right]$ and $c_{2}=\left[\begin{array}{c}3 \\ -5\end{array}\right]$. Consider the bases $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$. Find the change of coordinate matrix from B to C and from C to B.
4. a) If $W \subset V$ is an invariant subspace under T, then prove that T induces a linear transformation \bar{T} on \bar{V}. If T satisfies a polynomial $q(x) \in F[x]$, then prove that \bar{T} also satisfies $q(x)$. Further, if $p_{1}(x)$ is the minimal polynomial for \bar{T} over F and $p(x)$ is that for T, then prove that $p_{1}(x)$ divides $p(x)$.
b) If V is a n-dimensional vector space over F and if $T \in A_{F}(V)$ has all its characteristics roots in F, then prove that T satisfies a polynomial of degree n over F.
c) If $T \in A_{F}(V)$ is nilpotent then show that $\alpha_{0}+\alpha_{1} T+\alpha_{2} T^{2}+\cdots+\alpha_{m} T^{m}$ is invertible when $\alpha_{0} \neq 0$ where $\alpha_{i} \in F$.
$(5+5+4)$
5. a) Define nilpotent transformation. Prove that two nilpotent transformations are similar if and only if they have same invariants.
b) If $T \in A_{F}(V)$ and $p(x) \in F[x]$ is the minimal polynomial for T over F. Suppose that $p(x)=q_{1}(x)^{\ell_{1}} q_{2}(x)^{\ell_{2}} \cdots q_{k}(x)^{\ell_{k}}$ where the $q_{i}(x)$ are distinct irreducible polynomials in $F[x]$ and $\ell_{1}, \ell_{2}, \cdots, \ell_{k}$ are positive integers. If $V_{i}=\left\{v \in V: v q_{i}(T)^{\ell_{i}}=0\right\}$ and T_{i} is a linear transformation induced by T on V_{i} for $i=1,2, \cdots, k$, then prove that for each $i=1,2, \cdots, k$, $V_{i} \neq 0$ and $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k}$, the minimal polynomial of T_{i} is $q_{i}(x)^{\ell_{i}}$. (7+7)
6. a) State and prove Cauchy Schwartz inequality in an inner product space.
b) Define an orthogonal and orthonormal set of vectors with examples. If A is a symmetric matrix then prove that any two eigen vectors from different eigen spaces are orthogonal.
c) Orthodiagonalize the following matrix $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$
7. a) Classify the following quadratic forms.
(i) $Q(x)=3 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{3}+4 x_{1} x_{2}+4 x_{2} x_{3}$
(ii) $Q(x)=3 x_{1}^{2}+6 x_{2}^{2}-4 x_{1} x_{2}$
(iii) $Q(x)=3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{3}+2 x_{1} x_{2}+2 x_{1} x_{2}-2 x_{2} x_{3}$
(iv) $Q(x)=x_{1}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}$.
b) Let $Q(x)=3 x_{1}^{2}+3 x_{2}^{2}+4 x_{3}^{3}+4 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}$. Find the maximum value of the quadratic form $Q(x)$ subject to $x^{T} x=1$ and also find a unit vector at which this value is attained.
c) Find the singular value decomposition of the matrix $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ -1 & 2 & 2\end{array}\right]$.
8. a) For any n dimensional vector space over F, any basis β for V, prove that Ψ_{β} is a vector space isomorphism from $B(V)$ onto $M_{n}(F)$.
b) Define rank and signature of a real quadratic form. Show that two real symmetric matrices are congruent if and only if they have the same rank and signature.
c) Find the rank and signature of $x_{1}^{2}+4 x_{2}^{2}-3 x_{3}^{3}$.
